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The following list of changes, which includes the changes listed in 
all previously issued errata, should be noted5 

Page 3, line 5. Read 0 instead of A .  

Page 7, equation (6). The expression in the parentheses, last line, 
should read: 

Page 8, equation (8 ) .  The expression in brackets, last line, should 
read: 

Page 13. The definition of ( should read: 

Page 14, line preceding equatian (19jl Correct expression for xa 
tu read: 

Page 17, line preceding equation (28). Read ''wing'' for 'ttip.t' 

Page 18, equations (31) and (32). "he rightrhand sides should be 
multiplied by 2 (i.e., the number 2 appearing in the coefficients should 
be 4). 
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Page 20, equation (36). Inaert  f3 i n  the denominatil3r of the 
coefficient of the righGhand member. 

Page 20, bottcm of page. 
should read ”. . , when k i 8  mual l .”  

Page 23, equations (46) and (47). 

The l ine  preceding the ser ies  for K ( k t )  

Multiply right-hand =embers 
by (-1). 

Page 24, equation for H’(m). Change to read? 

Page 26, eqmtion (51). Replace by 

where K and F are:the c l e t e  and incomplete e l l i p t i c  integrals of 
the first kind, of modulus Tf, and 

(This solution is  due ta H, S. Ribner, of the NACA.) 

Page 27, equation (55 ) .  The expression i n  brackets should read: 

Page 28, lines 2, 3, 4, and 3. The ser ies  expansion of I - - X 2 E  is 
no longer pertinent, Substitute the following for l ines  2, 3, 4, and 5: 

The fo l lming  aeries expansion (frm reference 9) is useful: 
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Page 29, equation (58). Close brace at end of equation. 

Page 30. The expression for the induced moment AM should read: 

and 

Page 34, line 21. Amend to read "(Au), replaced by the right-hand 
member of equation (51)" and delete the expression which follows. 

Page 38, follaxing equation (74). Read "equation (38)" for 
"eqFtion (30) * "  



Page 40, equation (77). The expression i n  brackets should read: 

Page 46. The table should read as follows: 

c b  C D / C L ~  Aspect 
r a t i o  

Tapered wing 3.85 3.09 0.160 

Untapered wing 1.73 1.97 .326 

Modified untapered 
wing 2.45 2.62 .236 

Page 49. In  E, read p2z2 for  ~ 2 2  

In  g(a) ,  read f o r  m t  m 
In  Q, read (1-q) for  ( l + m t )  

Page 52, equation ‘(A6). Inser t  at2 i n  denominator of the coeffi- 
cient of the right-hand member. 

Figures 

The changes arising from the correction of equation (51) have onby 
a small ef fec t  on the calculated resu l t s  presented, 
change in  the downwash, which was not evaluated in  t h i s  report ,)  
general shape of the pressure distribution remains the same. The 
magnitude of the correction is  indicated i n  the figure below, i n  which 
the correct nu/% 

(There is a major 
The 

and the curve given by the or iginal  equation (51) 
I .  
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are campsred for m,-0=Om57. 
used to find the percent error in component 1 of the presxure distribu- 
tions in figure 17. 
increased. 

This figure corrects figure 13, and may be 

Component 5 in figure l7(d) will likewise be 

Tables I 
L Table I. The component of - 

from equation (55) should be ch&d 
equation (73), from +0.14 to +0.16. 
and Ck=1.97, or 0,034 per degree. 

and I1 

calculated for the untapered Xing 
from -15.90 to -18.28, and from 
The total is therefore ll4.28 qa 

Table 11, The values of -% contributed by the symmetrical mke qa 
solution, as corrected, are as follows: 
amended totals are -457.4, -728.2, and -660.5, and the ratios of Hloment 
arms are 1.08, 0.8& and 1.01. 

19.9, 207.3, and 41.3. The 

NACA-Langley - 8-8-49 - 1000 
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TECHNICAL NOTE NO. 1555 

TEE THECIRETICAL 

WINGS KC' 

BY 

LIFT OF FIAT SWEPT--BACK 

supERsomc s m m  
Doris Cohen 

The method of superposition of linearized conical flows has 
been applied to the calculation of the atmodynamic properties of 
thin, flat, swept-back wings at an angle of attack. 

Various cases w0 distinguished, depending on the sweep of the 
leading and trailing edges relative to their respective Mach lines. 
Where the Mach line from the apex of the wing lies beh'ind the 
leading edge but intersects the tip, formulas for the total lift 
are given in closed form. 
the angle of attack. 
integration of elementary functions is required. 
edge, but not the trailing edge, is swept behind the Mach lines, 
the pressure distribution and the total lift are both given in 
closed form, but not the pftching moment. The induced drag is 
calculated by a simple formula from the lift. 

The induced drag is simply the l i f t  t i m e  
To obtain the pitching m0men-k the numerical 

Where the leading 

The highly swept wing with both leading and trailing eMes 
behind their respective Mach lines cannot be completely solved by 
the present method except by a series of successive approximations. 
However, the pressure distribution can be determined over all but 
the generally small region in which the tip and trailiwdge Mach 
cones overlap, and the total lift, pitching moment and induced drag 
can be approximated with practical accuracy, provided the aspect 
ratio is not so high nor the Mach number so Iow that the Mach lhes 
f r o m  the trailing edge intersect the leading edge. 
is not treated in the present paper.) 

(The latter case 

The complete procedme for the highly swept wing is outlined 
and various degrees of approximation suggested. 
the general method to other plan forms is also discussed. 

Application of 

The investigation has produced an interesting result regarding 
the lift near the tip of a highly swept wing. The formulas show 



an abrupt drop i n  l i f t i n g  pressure across the t i p  Mach lines,  the 
residual l i f t  oTmr most of the enclosed area being almost ne&- 
gible . The attendant change i n  center-of-pressure location with 
Mach number may present a serious s t a b i l i t y  problem. 

As a resu l t  of t h i s  d e v e l o p n t ,  a wing with t i p s  normal t o  the 
stream is a l so  investigated. 
calculate and the necessary formulas are given i n  closed form. 
Calculations are presented for such a wing, as w e l l  as f o r  two 
conventional swept-back wings with 6 3 O  sweep of the leading edge, 
a t  a &ch number of 1.5. 

This case is  re la t ive ly  simple t o  

INTRODUCTION 

Although a number of treatments of the problem of the l i f t  on 
a t h i n  f la t  surface i n  supersonic f l a w  have recently been published 
(see bibliography of reference 1, and. references 2 and 3) the l i f t  
dis t r ibut ion over a wing with both leading and t r a i l i n g  edges swept 
behind the i r  respective Mach l ines  has not, a t  the present writing, 
been determined. The only expl ic i t ly  formulated solutions (a l l  
based on the linearizbd form of the flow equations) are essent ia l ly  
of the s w a l l e d  "conical" type, introduced by Busemann (reference 4); 
t ha t  is, solutions i n  which such quantit ies as the velocit ies and 
pressure are constant along lines radiating from a single point. 
The limltation is therefore automtical ly  imposed that the boundary 
conditions t o  be sa t i s f ied  must a l so  be constant along such lines. 
Under cer ta in  circumstances, conical f i e lds  may be suaerposed t o  
give surfaces of nonconical p lan  form. Figure l (a )  shows one such 
case, a finite-span trapezoidal wing swept only s l igh t ly  coqared 
t o  the Mach lines.  
symmetrical unyawed t r iangle  at an angle of attack, and is conical 
with respect t o  the apex 0. The tr iangle may extend t o  infinity.  
The pressure dis t r ibut ion over the shaded portion is constant; the 
values vary between the Mach l ines  from 0, but are constant along 
any ray drawn through 0. 
i s  necessary t o  cancel the pressure beyond the t i p s  AB and A'B' by 
superposing negatively loaded triangular surfaces with apexes at  
A and Ag and one edge para l le l  t o  the stream. 
sa t i s f ied  by the supplemsntary solutions are that (1) the pressure 
be constant over the subtracted surfaces i n  order t o  cancel the 
constant pressure i n  the basic solution, and (2) the downwash induced 
inboard of the s t r e k i s e  edge be zero i n  order that the surface may 
remain flat. 
A or A', so that a conical solution may be used. 

1 

The basic solution here is  tha t  f o r  a flat, 

I n  order t o  obtain a f i n i t e  wing, it 

The conditiom t o  be 

Both of these conditions axe conical with respect t o  
The area behind 

lThe sourcedis t r ibut ion methods of references 2 and 3, however, are 
applicable t o  curv i l imar  plan forms within cer ta in  rest r ic t ions.  
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BCB' may, of course, be subtracted without 
i n  any way, since the wing l i e s  ent i re ly  
originating from any point on the surface 
the case shown i n  figure l ( b )  . Here the Mach number is such that  
the Mach l ines  from A intersect  the t i p s  of the wing. 
with the same basic tr iangle,  we f ind  that the area t o  be removed 
outboard of A includes, i n  t h i s  case, a region over which the 
pressure varies, and is conical w i t h  respect t o  0. Since the 
boundaries of the region are, however, conical with respect t o  A, 
no one conical solution can satisfg the conditions. 
the preceding one can be t reated by the point-source method of 
reference 2. 

S ta r t ing  

This case a d  

It has becom custo3llary t o  describe a leading or t r a i l i n g  edge 
br ie f ly  as subscmic or supersonic accordingly a s  the camponsnt of 
free-stream velocity norm1 t o  it is  subsonic or supersonic, that is, 
as its angle of sweep is greater or  l e s s  than the sweep angle of the 
Mach lines. Thus w i n g s  1 (a)  and l ( b )  are said t o  have supersonic 
leading and t r a i l i n g  edgea. 
leading edge and supersonic t r a i l i n g  edge. 
the pressure over the region outboeLsd of the t i p  varies conically 
from the apex 0; whereas the area involved is conical from A. The 
wing shown i n  1 (a), with which th i s  paper is  chiefly concemd, 
presents the s&m~ di f f icu l t ies ,  not only at the tips, but a l so  along 
its subsonic t r a i l i n g  edge. 

I n  1 (c) is shown a wing with subsonic 
I n  this  case, as i n  I@), 

A still higher degree of sweep relat ive t o  the Ihch lines, o r  
a higher aspect ra t io ,  would resu l t  i n  the trailing-edge Mach l i m e  
intersecting the leading edge. 
problems, w i l l  not be covered i n  the present paper. 

the linsarized theories. 
examinations of the Fundamental problem and equations of supersonic 
flow, these w i l l  be given only cursory mention where necessary t o  
establish the course of the argument. The object of th i s  paper w i l l  
be t o  give a pract ical  mthod for approximating the theoretical  lift 
dis t r ibut ion for the conventional swept-back wing, and the emphasis 
w i l l  accordingly be on f i n a l  formulas, where they can be given. 
The wing 1(d) with both leading and trailing edges swept behind their 
respective Mach lines, for reasons t o  be discussed l a t e r ,  can be 
treated only by successive approximations. The msthod of carrying 
out the successive steps w i l l  be indicated, but the amount of work 
required t o  f ind the pressure dist r ibut ion beyond the first approxi- 
mation appears prohibitive without the aid of a mechanical computer. 
The t o t a l  lift and moment can be found t o  very good accuracy 
w i t h o u t  i f f icu l ty ,  however. Methods of approximating the 
ef fec ts  

This case, which introduces new 

The treatment of the problem w i l l  be along the usual lines of 
Since there have been so m n y  careful 

the first step w i l l  a l so  be suggested. 
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The degree of appr 
w i l l  depend on the aspe 
Numerical examples w i l  
indicate the possible magnitude of the errors. 

The method of canceling the pressure a t  the wing t i p s  was wig- 
ina l ly  suggested t o  the author by P. A. Lagerstrom of the California 
Ins t i t u t e  of Technology. The treatment of the subsonic t r a i l i n g  
edge is largely an extension of the sams method of attack. Applica- 
t i o n  of the mthods t o  other than conventional swept wings is  
discussed i n  the present paper. 

COORDINAWS A.ND BASIC PARAMETERS 

I n  accordance with the usual linearized approach, the boundary 
conditions are sat isf ied i n  the horizontal plane, rather than i n  the 
actual ?lane of the wing. 
that the apex of the leading edge is  a t  the origin, the positive 
X-axis extending back i n  the stream direction along the axis of 
symmetry of the wing and thcj Y - s i s  perpendicular t o  the X-axis i n  
the plane of the w i n g .  

The coordinate system will be chosen SO 

The Z-axis is  ver t ical ,  positive upward. 

If the corresponding perturbation v d o c i t i e s  are u, v, and w 
i n  the sam order, the pressure difference, or local l i f t ,  is  then, 
i n  the linearized theory, 

Ap = 2pVu 

or 

where p is the density of the air, q the dynamic pressure, and 
V the velocity of the stream. 

As previously noted, the conical solutions give values of the 
velocity u that are constant along.radial  lines. Therefore, the 
fundaslsntal geomtric quantitkes are the slopes of various r ad ia l  
lines. A l l  such slopes are measured fromthe stream direction as 
the reference l ine.  
quantit ies t o  the inclination l/j3 of the Ma 
since it is by now well t ha t  the so lu t i  
supersonic f l o w  equati ssent ia l ly  f m c  

It is  further convenient t o  re la te  these 
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Thu8 the following parameters and variables are definsd: 

= J3 cot A slope of leading edge 
slope of Mach l ines  m =  

m t  = f3 x slope of t r a i l i n g  edge 

a = p x slope of any ray from the origin, or 
apex of the wing 

J3 = V R ,  where M is  the free-stream Mach number 

Other symbols referring t o  re la t ive angular quantities will be 
defined as needed i n  the s & m ~  way. A summary of the symbols will 
be found i n  Appendix A. 

I - BASIC LIFI' DIS?IRIBUTION 

WING WITH supERsoI?Ic IEADING EDcs 

Pressure Distribution Over Triangular Wing 

The general procedure, as has been indicated, is t o  start with 
the solution for the inf in i te  tr iangle having the same sweep of the 
leading edge as has the wing under investigation, This basic 
solution has only one parameter, the sweep of the leading edge 
re lat ive t o  the Mach lines. Thus the incremental streamwise velocity 
dis t r ibut ion %(a) over a l if t ing triangular plate with supersonic 
leading edges is given (reference 5 )  by 
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where a is the angle of at tack in  radians. This f’unction i s .  
plotted in figure 2. 

Total Basic L i f t  

Thp integral of the pressure difference represented by t h i s  
velocity dis t r ibut ion over the plan form of the wing under considera- 
t i on  w i l l  be called the basic l i f t  The integration w i l l  be 
carried out f o r  case 1 (b), i n  which the leading-edge Mach lines cut 
across the t ips .  
ray8 of inclination a and a + da, and having as a th i rd  aide 
e i the r  (1) the t r a i l i n g  edge of the wing or (2) the wing t ip ,  
accordingly, as a i a  less than or greater than a t ,  the value 
corresponding t o  the ray through the t i p  of the t r a i l i n g  edge 
(fig, 2). Therefore 

b. 
The element of area is  a triangle formed by two 

where co is the wing chord i n  the plane of symmetry, u1 is the 
v d u e  of ya for a=l and s is  the semispan of the wing. From 
the geometry of the wing we obtain 

or 

mtco - - (.-at) 

The integration of equation (3) yields 
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This form becomes indeterminate when %a, t h a t  is, for an 
untapered wing .  For this case 

b 

+ Jzzi- (g + .>) 
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Basic Moment 

The center of pressure for t h i s  component of the l i f t  is 
readily obtained when it is considered that  each triangular element 
is  uniformly loaded and therefore has its center of pressure two-  
thirds of the distance along the median back from its apex 0. 
a < at, the x coordinate of the center of pressure is 

For 

For a > a t ,  the corresponding quantity is * B. Then the basic 
pitching moment about the apex of the wing is  given by 7 a  

or 

'3 cos-1- 1 
m mt2  
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For the untapered wiw' 

-t E [ (an2+l) m ( 3 - 1 )  (-t)l 1 +-  - 1 +  
2 

(9) 

WING WITH SUBSONIC UADING EIXX 

Pressure Distribution Over Triangular Wing 

'Ibe solution for the f la t  l i f t i n g  t r iangle  with subsonic 
leading edges has been given by Stewart (reference 6) and others. 
I n  the notation of t h i s  paper the velocity dis t r ibut ion i s  given by 

where E(-) is  the complete e l l i p t i c  integral  of the second. 
kind, of modulus d D e  
form the above expression and a l l  those tha t  follow i n  t h i s  section 
vary with Mach number only as the reciprocal of E (p) 

It should be noted tha t  for a given plan 
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Total Basic L i f t  

Integration of equation (10) over the wfng plan form gives 

As before, a special form is required when %en: 

Baeic Momnt 

The m m n t  is obtained from equation (7) with, however, the 
third integral deleted, since m <  1, and with m substituted 
for 1 as the upper l i m i t  of the second integral. Setting 
equal t o  the expression given by equation (10) we obtain 

UA 
E 

] + m coeh-1 
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For t corresponding fomrmla is  

I1 - THCATI@NT OF THE TIP 

I n  canceling the pressures a t  and beyond the t ip ,  the problem 
is brought within the l imitations of the conical solutions by 
breakin@; the region down in to  an inf ini te  number of constantly loaded 
overlapping sectors of in f in i te  extent. (See f ig ,  2.) These sectors 
are  bounded on one side by the wing t i p ;  the second side is  the 
extension of a ray from the apex 0 of the wing. The (constant) 
pressure on each sector is  then 2pTd%a, where a i s  the 
previously defined p a r m t e r  p times the inclination of the ray 
from 0, 
the element. 

da 

the ray i n  t h i s  case being the particular on3 bounding 

Any elelnent bounded by a ray of inclination a/P w i l l  hereinafter 
be referred t o  as the element a, or sector a. The apex of the 
sector w i l l  be designated by the coordina%es 
the constant incremental velocity over the element by 

q, ya and the value of 
%. 

ElZMEMTARY SOLUTION FOR TIP 

The f l o w  f i e l d s  t o  be superposed on the basic l i f t i n g  triangle 
t o  cancel l i f t  beyond the t i p s  w i l l  be required t o  sa t i s fy  the 
following conditions: 

1. The streamwise velocity u must be constant over the 
sector between the t i p  and the specified ray. 

2. The velocity u must be equal in value but opposite i n  
sign on the upper and lower surface8 of the sector, i n  order t o  
produce lift.  

se velocity u must be zero outeide the nector 
on 
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. -  

4. ‘Ihe associated downwash or vertical velocity w must be 
zero outside the sector on that side adjoining the wing, in order 
not to disturb the boundary condition of constant slope of the wing 
already satisfied by the basic solution, 

5. A l l  induced velocities must go to zero on the Mach cone 
fromthe apex of the sector. 
see reference 7. 

For a discussion of this condition, 

6. The velocity components .u, v, and w must satisfy the 
linearized supersonic flow equation and. the equations for irrot- 
tionality, 

The solution of the supersonic flow equations satisfying the 
specified boundary conditions (1 through 5 )  has been derived by 
Lageretrom, using the method of analytic extension. No attempt will 
be made to reproduce the derivation here. The discussion which 
follows is included only to illustrate the nature of the solution. 

Condition (6) may be shown to be satisfied by any analytic 
function of the complex variable 

It is convenient to set up the solution for u as such a function 
of E, since the boundary conditions are largely specified in 
terms of U. Condition 4, a condition on w, can also be related 
to u by the following procedure: 

Let u represent the real part of the complex analytic function 
and let the correspOnding complex poten- U(E) = u(x,y,z) + iE(x,y,z) 

tial be 

Then w = acp/az will be the real part of W = a!2/az. We may write 

x 
w=”f aZ udx 

as 



the additional t e r n  arising in  the differentiation under the 
integral  aign being zero. 

The lower l i m i t  of the integral  is arb i t ra ry  as far as the 
determination of !# i s  concerned, since it can only change 0. by 
a constant and i ts  derivatives not at  a l l ,  However, i n  order that 
condition 5 be sa t i s f ied  it now appears necessary t o  specify a 
point on the lkch cone as the l i m i t .  

Equation (16) may now be written 

The r a t i o  of pa r t i a l  derivatives appearing under the integral  
sign is independent of the function assumed f o r  U. I n  the plane 
z=O, it i s  equal t o  

-++!SEE (see footnote 2. 
Y 

a, /a2 
a, /ax 

Inside the &ch cone x > py and - is  an imaginary quantity. 

It follows that over any region of the X-Y plane i n  which U has 
no imaginary part ,  the r e a l  pa+, of W w i l l  remain constant, Since 
the region t o  which condition 4 applies is  bounded. by the Mach cone, 
on which W 
i f  the imaginary par t  of U 

is  zero, it follbws that conditior IC w i l l  be sat isf ied 
is zero m e r  the region. 

It is convmisnt now t o  introduce t3s variable 

which w i l l  be seen t o  reduce t o  zt = p $ when z=O. 
~~ 

2The general expression fo r  includes a r e a l  par t  which becoms 

However, the X-axis, 
indeterminate, rather than zero, when both y and z equal zero, 
and the argument tha t  follows no longer holds. 
along which t h i s  occurs, is  no$ included i n  the region under dis- 
cussion (see coadition h ) ,  so that the reasocing i s  adequate. 
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Without rewrit ing equation (15), we w i l l  consider the variable 
E t o  be referred t o  the apex (Xa,ya) of the elemntary sector a 
as origin and define the new angular paramster (corresponding t o  a 
in the fixed reference coordinates) 

This w i l l  then be the value of [ i n  the plane of the wing. The 
ray ta associated with any point P(x,y) and a particular sector 
a When the solution is  being applied t o  the is  sham i n  figure 2. 

S region of the wing t ip ,  78 = s and X a  = - SO that a 

I n  the region of the right-hand t ip ,  ta is negative on the 
wing, and positive on the elementary sector. It takes on the 
following special values: 

ta = a on the free-stream boundary of the sector 

ta = o 

ta = 21 along ei ther  Mach l ine  

along the wing t i p  

Conditions 1 through 4 m y  now be written 

o <, t a  <, a, l i m  U(X,S,Z) = u, (% constant) I z  I 2. 7 z+ 0 

As z approaches zero through positive and negative values, 5 
can be seen t o  approach the r e a l  value ta through conjugate camplex 



value 
take 
r e a l  part of U, however, is proportional t o  the imaginary part  of 
the logarithm and w i l l  therefore d i f f e r  i n  sign above and below the 
X-Y plane, as required by condition 2. 

n t  of the logarithm in  e 
omplex values, as will t 

In  the plane z=O, 

ua a+ta+2ata 
u = f r.p. 31 c o r 1  

t a d  

The argument of the inverse cosine i n  equatio4 (21) is plotted 
against ta i n  figure 3. When the argument is greater than 1 or 
less than - 1 t h e  function U is  complex. Both the r e a l  par t  
u and the imaginary par t  u are plotted, but only f o r  the upper 
sign i n  equation (21). 

It w i l l  be observed that conditions 1, 2, and 3 are  sa t i s f ied  by - 
u and condition 4 by the corresponding imaginary function U. By 
equation (16) and the corresponding expression for the l a t e r a l  
velocity component, w and v are determined, regardless of the 
function a s s m d  fo r  u, 
That u also sa t i s f i e s  that condition i s  readily demonstrated, 
since on the &ch cone x = j3d- and 5 = x/By > 1. When ( is  
greater than 1, the a r ~ n t  

i n  such a way as t o  satisfy condition 5. 

is  positive and greater than 

one, SO t ha t  U (e quat ion (20) )‘G or  u=o. 

APPLICATION TO WING WITH SUPERSONIC IXADING EDGE 

A s  long as the wing tapers i n  the usual seme, that is, from 
root t o  t i p ,  the condition of a supersonic leading edge implies a 
supersonic t r a i l i ng  edge as well. 
wake may be canceled without inducing any pressures on the wing ahead. 
The section tha t  follows w i l l  therefore cover completely a l l  correc- 
t ions t o  the baeic l i f t  for a swepbback wing of type l@). Moreover 
when the t o t a l  lift has been found, the drag due t o  l i f t  is also 
known i n  t h i s  case, since it is merely the lift times the angle of 
attack when the leading edge of the wing is supersonic. 

I n  tha t  case the pressure i n  the 

Induced Pressure Distribution 

The basic l i f t  distribution has been given by equation (2). 
Following the procedure outlined i n  the preceding section, we divide 
the l i f t  outboard of the wing  t i p  along projections of rays from the 
apex of the wing (fig. 2). Beyond a=l no further division is  



necessary, since the basic pressure is constant at  u1 ahead of the 
Mach l im from 0, Thus the solution t o  be superposed may be con- 
sidered t o  be made up of the sector a=sn with constant incremental 
velocity % = -ul and an inf in i te  number of narrower sectors 
(a < 1) each with constant infinitesimal yelocity 

Then the t o t a l  indyed correction t o  the basic velocity distribution 
is 

where ta  is  the fmc t ion  of x,y and a defined by equation (lg), 
and must be 80 expressed before integrating; and where 
function of x and y obtained by set t ing a equal t o  m i n  ta. 
The lower l i m i t  a. 
sector that can influence the pressure of the point 
the sector such that the Mach l ine  from i ts  apex 
through the point x,y. The.expression fo r  ao, found by set t ing 
ta equal t o  -1 and solving for a, is 

h is  the 

of the integral  corresponds t o  the most rearward 
x,y; that i a ,  

Xa,S passes 

This parameter w i l l  be additionally useful as the value of 
which the function given by equation (21) goes t o  zero and its 
derivative has a singularity. If a. is equal t o  or greater than 1, 
the induced velocity Au reduces t o  the f i r s t  term of equation (23). 

a a t  

fiom equation (2) 

and 

The integration of equation (23) f o r  the loca l  pressure has 
not been carried out, since the solution for t h i s  case i s  obtained 
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more e a s i l y  by the method of reference 2. However, the t o t a l  l i f t  
induced on the wing by canceling pressure outboard of the t i p  is 
readi ly  obtained by the present method if the crder of integration 
is  reversed and the t o t a l  l i f t  induced by a single e l e m n t  found 
first. 

Total Induced L i f t  

The change i n  l i f t  due t o  any t i p  element a, obtaihed fron 
the velocity dis t r ibut ion (equation (21)) , is 

where dS is the elemmt of 
not cut  the opposite t i p ,  

wing area. If the l i ne  ta = -1 does 

where a t  is  the value of a defined by equation (4). Then 
equation (27) becomes, a f t e r  integration by parts, 

where 

and the t o t a l  change i n  l i f t  is  (taking both w i n g  t i p s  into account) 

For the first term of equation (3O), a is taken equal t o  n i n  
equation (29), and U a  equal t o  ill (equation (25)). The second 
term is integrable by elementary methods. The f i n a l  result is 
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1 

As before, a special  form is neeaed for the untapered w i n g :  

Induced Moment 

m e  momnt due t o  t h i s  correction t o  the l i f t  may also be 
expressed i n  closed form, but the formulas are  so long and unwieldy 
that the i r  integration i n  general terms w a s  not considered worthwhile. 
The moment arm of any element dta  from &,s about the Y-axis is 

The moment induced by any element a is 
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where 

h(a) = (l + $) 
The t o t a l  induced moment (including both wing t i p s )  is  

(34) 

As  i n  the case of the l i f t ,  the first term is evaluated by se t t ing  
a equal t o  rn and ua equal t o  u1 i n  equation (33). I n  the case 
that mt=m, special l imiting forma of g and h w i l l  be required, 
-1Y , 

and 

h(m,m) = 
m (l+m) 

Integration of the second term can be done numerically f o r  any 
particular case . 

APPLICATION TO WING WITH SUBSONIC LEXDING EDGE 

The caee of a wing with subsonic leading edge 

The formulas t o  be obtained f o r  t h i s  case w i l l ,  how- 

(mcl) requires 
s l igh t ly  different treatment because the pressure a t  the leading edge 
is inf ini te .  
ever, give the complete theoretical  somtion f o r  such a wing as long 
as the t r a i l i n g  edge is not a l so  subsonic. 
not hold 
the complete solution. 

Where t h i s  condition does 
the following sections w i l l  give the first step in  (..t<l), 

Induced Pressure Distribution 

It is necessary t o  write equation (23) for the induced velocity 
a t  x,y as 



X+tx+2Xth, + 'lX auA a+ta+2ata 
Au = l i m  [* cos-' - cos-1 

X J m  tx-X * a0 .. t a d  
(35 1 

where ,  as before, t a  must be replaced by a function of I, y, and 
a, Integration of the second term by parts gives 
r i s e  t o  a term which exactly cancels the first term and is zero a t  
the other l imlt ,  leaving after substi tution for 

(equation (19) ) . 
q, 

mis integral  is f i n i t e  and can be evaluated i n  t e r m  of 
e l l i p t i c  integrals as follows: 

-2x ,/T rn2x2--j32yZ {m K(k') [ 2 

and the argument Jr = s i r 1  ,/E , me e l l i p t i c  integrals 

F, K, and E are extensively tabulated i n  reference 8. 
available i n  Pierce's Table of Integrals and most handbooks, but 
experience has sham that k* 
that K(k*) as tabulated i n  the handbooks is not always satisfactory 
fo r  interpolation, The following series (reference 9 )  converges 
very rapidly and is preferable for computing K(kt) when K is  small: 

They are also 

is generally very nearly unity and 

A t  the t i p ,  y=s and the first term i n  equation (37) vanishes. 
I n  the second term, Jr becomes and E (Jr,k') and F(Jr,k?) 

2 
reduce t o  the complete integrals E (k?) and K(kt), respectively. 
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The induced velocity correction Au 
equal t o  -I& 

w i l l  then be seen t o  be exactly 
bringing the lift t o  zero a t  the wing t ip .  

Drop i n  L i f t  Across T i p  Mach Line 

An interesting effect  shows i t s e l f  a t  the other l i m i t  of the 
t i p  region - the Mach l im fromthe t i p  of the leading edge, Along 
t h i s  l im  only the influence of the leading-edge pressure is f e l t ;  
that is, aO=m, Then k=O, k g = l ,  K ( k )  = K(kg) = 00 and Z(kr)=l ,  

E (Jr,lct) reduces t o  sin Jr = p$ and finEtlly 

2. 

Thls  resu l t  corresponds t o  a f i n i t e  drop i n  pressure across the.Mach 
l ine  from the t i p ,  an effect  which does not appear as long as the 
leading edge is ahead of the Mach lines. 
re la t ive t o  the pressure j u s t  ahead of the k c h  l ine  should be of 
interest ,  This r a t i o  i s  

Ti?e magnitude of the drop 

Ps 
Since a=Py/x, and on the Mach l ine  from the t i p  
the r a t i o  Ou/% can be rewritten very simply i n  terms of m and 
a as follows: 

p (s-y) = x - - m J  

This function i s  plotted i n  figure 4 against a/m, 

It w i l l  be seen tha t  the percentage of loss of l i f t  a t  the t i p  
i s  very.large and, i n  fact, that fo r  any but the lowest aspect r a t i o  
wings the l i f t  remaining i n  tha t  region, which drops t o  zero a t  the 
t i p  i t s e l f ,  is  almost negligible, Some indication of t h i s  e f fec t  3g 
contained i n  the resu l t s  of reference 10 for  the l i m i t i n g  case of 
m=O. It i s  an ef fec t  of considerable practical  interest ,  suggesting 
a s  it does a considerable change in  pitching momnt with Mach number 
as well as  the inefficiency 'of the t i p  area of the wing. 
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Total Induced L i f t  

Proceeding t o  the calculation of the t o t a l  correction t o  the 
l i f t ,  we integrate the change i n  l i f t  (at),. (equation (29)) 
induced by each element a, over the range a t  < a 
we encounter the d i f f icu l ty  that + OD as  a +- m and must 
therefore write the t o t a l  l i f t  i n  terms of l imiting values. 
convenience the function 

For 

from equation (29), i s  defined. 
sponding t o  equation (30) f o r  the preceding case, may be written 

Then the t o t a l  induced l i f t ,  corre- 

AJL = 2pVmt2Ps2 l i m  [ -uA(a)G(a) + la 2 G(a)da] (41) 
a + m  a t  

Integrating by par ts  resu l t s  i n  cancelation of the f irst  term 
inside the brackets. Since G ( a t )  i s  zero, equation (41) reduces to 

Equation (42) has been integrated i n  terms of e l l i p t i c  integrals,  
but because the resu l t  involves several new functions it w a s  thought 
be t te r  t o  present it i n  an appendix (Appendix B) .  For pract ical  use 
graphical or numerical integration may be preferred. Here again, 
however, the d i f f icu l ty  wi ses -a t  the leading edge tha t  and 
therefore the integrand of (42) becomes inf in i te ,  although the inte- 
gral i s  f ini te .  For numerical integration it is  possible t o  dispose 
of the singularity by integrating once more by parts. 
simpler method i s  t o  write 

A solnewhat 

fi = *pvmpps2 uA(a) (a)&* (m)] da +dtm uA(a) GI ( m ) b  

d of the first term can now be shown t o  approach 
zero as a approaches my and the second term is  readily inte- 
grable, since G' (m) is  a constant. The resul t ,  when has 

integrated, is  
been replaced by its value from equation (10) and the t e r m  
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men m t a ,  G'(m) reduces t o  

Induced Moment 

- The momnt induced by cancellation of the t i p  pressure is  found, 
as i n  the preceding case,"%y the integration of 
over the appropriate range of a. Again, the actual integration is 
best  done numerically for  any specific case i n  which the mment may 
be required, Because Ua  becoms inf in i te  a t  the leading edge, it 
w i l l  first be necessary t o  integrate by parts,  as i n  the case of 
She t o t a l  l i f t .  

(AM)& (equation (33)) 

Following the same procedure, w e  l e t  

- A  H(a)  = 

from equation . (33), 

= - 2pvps="mt2 

so that the t o t a l  induced moment is 

a 3 H(a)da  ] 
d a  

For numerical integration, the procedure outlined far finding the 
119% I s  repeated, giving 
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When mt=m, H r  (m) becollles 

111 - WING IiI'I'H SUBSONIC TRAILlNG E K E  

The problem of sa.ti$fying the Kutta cordl t i o c  of zero pressure 
difference at the t r a l l i n g  edge and i n  the wzke behind a highly 
swept wing is attacked i n  a manner similar t o  tha t  used oil the t ip .  
The region behind the actual w i n g  swfacs  1.8 divided Into segments 
over which constant presswe Increllients may be assumed by extending 
the rays f r o m  the aper cf the wing through points G,ya. on the 
t r a i l i ng  edge. This division of the wzke region is jndicated i n  
figure 5 ,  wlth a typical elemntary sector a 
lines. 

indicatsd by heavy 

EIEMEmRY SOLUTIONS FOR 'IRAILXNG EDC;E 

The element i n  t h i s  case d i f fe rs  from tha t  
one i n  tha t  the fixed side is no longer para l le l  t o  t 
is inclined a t  the mt t o  it. The b 
t o  be sa t i s f ied  by 
r i g h k h n d  half of the 

ntary solution are 
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i n  addition t o  the general conditions 5 and 6 stated previously. 
The pertinent resulta of the preceding discussion w i l l  be assumed 
i n  order t o  shorten the discussion a t  t h i s  point. 

"he variable ta is  tha t  &fined by equation (18) and refers  
t o  the slope of rays originating a t  the apexes of the trailing-edge 
elements a. Along the t r a i l i n g  edge 

we may solve for x, and ya as functions of a 
Since 
and the constants m t  and CO: 

Then 

The solution fo r  the oblique triangle satisfying the specified 
conditions is (in the plane of the wing) 

Equation (21) w i l l  be seen t o  be the special  case of equation (50) 
i n  which mt=O, 
of wing and element are now reversed. (See f ig .  5.) 

with the axes reTerse0 because the relat ive positions 
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A t  t h i s  point a d i f f icu l ty  not encountere2 i n  the tres,tment of 
the t i p  must be considered. 
connection with the element a=O, that is, the r igh t  tr iangle with 
apex a t  the t r a i l i n g  edge of the root section. The Mcch cone from 
that point includes segments of both wings, so tha t  condition 4 should 
properly be q p l i e d  over part  of the negative range of 
8.8 the positive. This could be done fo r  a=O, but f o r  any other 
small value of a, the area. t o  be so treated would be nonconical 
with respect t o  the apex of the element a and therefore the bomd- 
ary condition of zero donwash could not be fltte2. in to  the conical 
solution. 
seem unavoidable. 
of a solution fo r  a = O  that does not introduce any downwash on 
the far wing. 

This d i f f icu l ty  is most apparent i n  

ta as well 

Thus a deviation from the flat-plate boundary condition 
However, the e r r c r  can be minimized by the choice 

The presswe a t  the root of the t r a i l i ng  edge is  aost  simply 
disFosed of by means of a symmetrical solution satisfying the 
following conditions : 

where 
root section (azo, X ~ = C O ,  ~ a = o ) .  The required solution is 

t o  re fers  t o  rays emanating fromthe trailing edge of the 

From eqLiation (10) 

The major portion of the pressure in  the wake w i l l  be canceled 
by solution (51); the remaining pressure may be canceled by the 
solutions given i n  equation (50) where 
The downwash induced on the far wing by the solutions should be, and 
has i n  f ac t  been found t o  be, small, first, because 
and second, because as a and % increase, the portion of the far 
wing surface affected by the element 
increases i n  distance from the element. 

ua is, as before, - dw da. du. 

du /da  is small; 

a decreases i n  area and 



APPLICATION AT TRAILING EI)(IE 

Pressure Distribution Near T r a i l i n g  Ed@ 

I n  determining the pressure a t  any point x,y on the w i n g  
surface it is first necessary t o  determine the most rearward 
element a. that w i l l  influence the point x,y. A s  before the 
value of a. i s  found by set t ing t a  (equation (49)) equal, in  
t h i s  case, t o  1, so that 

a. = m t  (53 1 

I 

The velocity induced a t  any point within the Mach cone from the 
vertex of the t r a i l i n g  edge by superposition of the trailing-edge 
solutions discussed thua far is  given by equation (51) plus the 
integral of equation (90) with respect t o  a, from a = O  t o  E t a o .  
The t o t a l  i s  t o  be subtracted fromthe basic distribution given by 
equation (10). 

Total Induced L i f t  

If the Mach l ines  from the apex of the element a do not cross 
the leading edge of the wing, the conical e lemnt  of area fo r  the 
integration of the Fressure t o  the t i p  is 

For the symmetrical solution, a=O and 

Integrating equation (31) omr dS f r o m  to=mt t o  to= l  and 
multiplying by two t o  take account of the negative half of the 
wing gives, fo r  the symmetrical solution, 
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When q is nearly 1; 
d i f f i cu l t  t o  evaluate a 
(from reference 8) 

1 l-gE(i-) x = -  'at 2 [ l - - R  ( & + = R 2  + 

/l-m.t 
where R = - 

The t o t a l  correction t o  the l i f t  induced by one of the oblique 
triangles i n  the wake is  found by integrating equation (50) over 
as given by equation O k ) ,  from the t r a i l i ng  edge t o  t a d .  The 
result ing formula is  

dS 

For the t o t a l  induced correction t o  the l i f t  due t o  the oblique 
elements, 
substi tution f o r  %, and added t o  LSL obtained from equation (55) .  

w i l l  have t o  be h tegra ted  Qver both wings, after. 

The integmtion has been done f o r  both tapered and untapered 
wings and resu l t s  i n  the following formulaa: 

- F ( Q O A  3 
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where 

29 

r-- I 



30. 

Induced Moment 

Any constantly loaded elemnt  of area - dS dta from G j Y a  
dta has a marnsnt a r m  about the Y - a x i s  given by 

For the symmetrlcal solution, a = O  and th i s  sxpresslon reduces t o  

moment induced on both halves of the w i n g  by superposition of 
the sgmmetrical solution is, from equation (51) 

and r 

me m n t  induced by a single oblique element a is niost 
conveniently wrltten i n  two p a r t s ,  correeponding t o  the t w o  terms 
of equation (59 ) :  
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In  the corresFonding bracketed expession equals 

SUCCESSIVE SWPS FOR COMPU'IT SOLUTION 

Application of the procedure described so far w i l l  resul t  i n  
cancellation of the pressure along the forward p a r t  of the t i p  and 
along the inboard portion of the t ra i l ing  edge. Over that p a r t  of 
the t i p  that lies within the Mach cone from the apex of the t ra i l ing  
edge, however, the method of removal of the trailing-edge pressures 
has induced an extraneous negative pressure, fo r  which an additional 
correction will  have t o  be made. Similarly, the t i p  solutions have 
introduced negative pressure along that portion of the t r a i l i ng  edge 
fa l l ing  within the Mach cones from the t i p .  There is alRo a complex 
distribution of pressure in  the wake and i n  the stream beyond the 
Wing "bip8. 

The l i f t  restored t o  the w i n g  as a resu l t  of the cancellation 
of these erroneous negative pressures w i l l  be referred t o  as secondary 
corrections t o  the baaic l i f t .  

Figure 6 shows the regions near the wing t i p  affected by these 
secondary corrections . The errors introduced by the primary correc-. 
tions occur along and behind the t ra i l ing  edge from t m  = -1 t o  the 
t ip ,  and along and outboard of the t i p  from to = 1 t o  the trailing 
edge. Since In general vg ry . l i t t l e  of the w i n g  surface lies within 
the Mach cones (shown shaded in  f*ig. 6) from thesc regions, md the 
actual flow pattern of the viscous f luid wciuld d i f fe r  considerably 
from what we wculd calculate, it i s  questionable hcw far one should 
go in  attempting t o  correct for the resldual pressure8 there. The 
exact procedure w i l l  be outlined here, and may be feasible when a 
mechanical computer is available t o  perform the integrations 
numerically. A method for e,pproxlmating the pressure dlstrlbu- 
tion, l i f t  and moment will be suggested in  a follarlng section. 

It should first be noted that  the distribution of residual 
l j f t  i n  the f i e ld  is no longer conical with r e s p c t  t o  any one 
point, bct is composed of an inf ini te  number of superimposed conical 
f ie lds  originating a t  various points along the t ra l l ing  edge and t ip.  
I n  order tc. cmcel  these pressures accurately, it i s  necessary t o  go 
back t o  the application of the elementary solutions a t  the wing t i p  
and t ra i l ing  edge and cmcel  the extraneous pressurea introduced bg 
each one. This w i l l  involve, for  each element, the integration of 
an infinite number of elementary solutions of the other type; that 
is, trailing-edge-induced pressures w i l l  be canceled by the applica- 
t i o n  of t i p  solutions, and vice versa. 



Consider an element at  the t r a i l i ng  ed#p (fig. 7) with uniform 
pressure h, giving rise t o  a pressure i e ld  defined by equation (50) 
i n  terma of ta, the angular diaplaceme around G,Ya on the 
trailing edge. The velocity 

with 

induced at  points Xb,yb on the W i n g  t i p  by the individual ~h3IIBnt 
a 
t i p  formd by extensions of the rays ta from %.ya on the 
trailing edge. 
their Mach cones which may be expressed i n  terma of the angular 
dieplacelnant around the apexes of the elemnt  Xb,yb. This die- 
placemnt may be denoted by the peseslster 

may then be removed by superposing triangular elemsnte a t  the 

Such t i p  elemnta in turn induce velocities within 

which le a function of 
effect of a single t i p  
t o  

a and ta. Then, f r o m  equation (21), the 
e lemnt  bounded by the ray ta l e  proportional 

Since &)a = 0 
x,y 
wake element a w i l l  be 

a t  ta = 1, the t o t a l  velocity induced a t  a point 
on the wing by removal of a l l  t i p  pressures resulting from the 

(67 

The derivative d(Llu)./dt, l a  infinite at  the lower limit. 
I n  order t o  perform the i dicated integration graphically it is 
preferable t o  write d(Au'a dta = d@u)a and Integrate by 

d t  a 



plott ing the inverse C O E I ~  function against (4U)a far the 
indicated range of values of t a m  

The foregoing procedure must i n  turn be followed f o r  values of 
a frm a = O  back t o  that value of a fo r  which t b  (ta,x,y) = -1 
when ta=l (i-e., for which the point x,y lies on the reflected 
Mach l ine  from %,sa), and the results integrated with respect 
t o  a. 

"he integrated expressions, (29) fo r  the l i f t  and (33) fo r  
the Mrment due t o  each t i p  element, apply t o  the elements from 
q , ~ r b  if a is replaced i n  the functions g and h by ta  and 
elsewhere by a(q,,yb) = pyb/Xb. I n  the coefficient, - d@U)a/dta 
w i l l  replace % a8 the constant velocity over the section. For 
the t o t a l  incremsnt i n  lift and moment caused by correcting f o r  a 
single wake elemsnt a, @L)b and (&M)b obtained in  t h i s  way 
would have t o  be integrated with respect t o  ta  from ta  = m t  to 1. 
Again, since 
able t o  integrate with respect t o  
t o  be integrated again with respect t o  a, from a=O t o  a=+. 

solution (equation (51)), the 8- procedure would be used with 

d@U),/dt, is  inf ini te  a t  the limits, it is  prefer- 
@U)aa The results would have 

In canceling the t i p  pressures introduced by the s p m t r i c a l  

replaced by 

uo (l+mt2 ) to2-2mt2 - C O B 1  
n (l-Int2 ) to2 

and ta = to, X a  = CO and 78 = 0. Integration with respect t o  
a is, of course, not required. 

A similar procedure t o  that just  outlined would be followed 
i n  canceling the extraneous pressures introduced a t  the t r a i l i ng  
edge by the original application of canceling solutions a t  the 
tip., I n  th i s  case, however, the presence i n  the basic solution 
of inf ini te  velocities a t  the leading edge leads t o  considerable 
difficulty in obtaining a satisfactory method f o r  nwnerical 
integrations. Since the results presented in  figure 4 suggest 
that the wing t i p  should be raked inward fo r  eff ic ient  design, 
it does not appear worthwhile t o  develop th i s  part  of the solution 
i n  any further detail .  
extraneous pressures a t  the t i p  presented in  the following section 
is considered satisfactory fo r  practical  investigation of the 
conventional wing t ip .  

The approximate method for  treating the 

Where the &ch number is very low (close t o  l.O), it might be 
necessary t o  carry the foregoing procedure through another step, 
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canceling the pressuree introduced a t  the opposite edge by the new 
solutiocs i n  tb. 
converging one, since (1) the functions givinrs the pressure distri-  
bution are averywhere srtaller In  value than the pressure being 
removed, and (2) the area affected by each successive step is  
smaller than the Freceding. 
following section may be made a t  any later step i n  the calculations. 

It is clear that  the process outlined is  a 

The approximatione suggested i n  the 

METEODS FOR APPROXIMA!FE SOLU??ON 

"he following method of approximating the secondary correctlone 
w i l l  result i n  cancellation of the extraneous pressures a t  the 
t r a i l i ng  edge and along the t i p  of the wing, but w i l l  not take 
account of the exact variation of pressure i n  the stream. It w i l l  
be apparent however, that the residual errors w i l l  be small, partic- 
ularly i n  the i r  effect  on the wing. 

Correction for  TipInduced Pressures 

The 8ssqt ion w i l l  be made that eince the pressures induced 
by the t i p  are i n  the main due t o  cancellation of the inf in i te  
pressure a t  the leading edge, the extraneous pressure f i e ld  introduced 
by the t i p  solutions wil l  be very nearly canceled by a pressure f i e ld  
conical from the t i p  of the leading edge (fig. 8), provided the 
pressurea are made t o  cancel exactly along the t ra i l ing  edge. I n  the 
conical pressure f i e ld  t o  be superimposed, the velocities are held 
constant a t  Au (equation (37)) along the rays t m  proJected from 
the t i p  of the leading edge back into the wake. To effect t h i s  
approximite cancellation, values of Au are calculated from 
equation (37) for  points q,,~rb along the t ra i l ing  edge. The 
corresponding values of are 

Let the particular point a t  which the l ine .b = -1 
the trailing edge be deeignated by x*, y* and other oymbola 
referring t o  that point be elmllsrly starred. 
induced a t  any point x,y on t h e  w i n g  by removal of Au along the 
trsiling edge vi11 be (from equation (50)) 

intereecto 

Then the velocity 



36 

2 (t*-mt)-(.+l) (1-t*) d U *  - cos-l 
R (1* 1 (t *+I] 

where Au* l e  given by equation (38), t* is the paramter $s 
and t b  is the Freviausly defined parmster (equation (65))  msasuring 
displacement around other points q,yb on the t r a i l i ng  edge. The 
upper l i m i t  of integration is a function of the point 
the preasure is being determined. 

x,y at which 

The derivative dAu/dt, would have ta  be determined numerically 

I n  order t o  avoid t h i s  procedure, it is  preferable t o  rewrite 
or graphically from a plot of the calculated values of Au against 
&. 
equation (69) as 

and integrate by plotting the inverse cosine function against Au. 

For the t o t a l  change in  l i f t  and moment resulting f’ram t h i s  
correction, equations (56) and (61(a) and (b)) would be used, with 
the following substi.tutione: 

fo r  ua, AU* and Uu/dt,  

for a, outside the brackets, Sy*/x* and 

for  a, inside the brackets or i n  Q, -1 and 

The t o t a l  secondary t i p  correction t o  the l i f t  (over both halves of 
the w i n g )  would then be (from equation (56)) 
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which should again be integrated by rewriting @Au/dh) a t ,  a8 dAu. 
5 corresponding correction t o  the moment can be written s imilar ly  
f rom equation (61). The expressions i n  the brackets beconrt indeter- 
minate when tp3. = 0. Thsir limiting values may be obtained directly 
from the series expansions i n  Q, since Q ( o )  = 0. 

Currection fo r  Traili@d.ge Induced Pressures 

The residual pressure a t  the t i p  induced by the application of 
the trailing-edge solutions has a somewhat different distribution 
fromthat induced at  the t r a i l i ng  edge by the t i p  solution. 
procedure corresponding t o  that Just described - that is, assuming 
that the pressures induced by the oblique solutions, as w e l l  as by the 
symmtrical solution, a l l  originate a t  the center of the t r a i l i ng  
edge - le not so readily Justified as i n  the preceding case. However, 
the pressures induced by the oblique solutions are quite small, and 
the i r  secondary effect, particularly on the t o t a l  l i f t ,  might i n  fac t  
be neglected, if it were not comjJaratively simple t o  take them into 
account with t h i s  assumption. 

A 

The apprcuimation is made by substituting in  the previously 
given equation (67) for  the secondary tralling-edge correction t o  the 
local velocity at  any point x,y, the value of 

Bs to = - 
=b4 o 

for ta. The approximate Induced velocity correction is  therefore 

at  the points 
equation (51) 
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and the integral  of equation 6 0 ) .  

Equatims (29) and (33) are applicable i n  calculating the 
t o t a l  correction t o  the, l i f t  and mament, w i t h  the following sub- 
sti tutions:  

for a, except i n  g(a) and h(a), 

for  &) and h b ) ,  d t o )  and h(t0) 

Thus the t o t a l  secondary trailing-edge change i n  l i f t  (both halves 
of the wing) would be 

and the corresponding correction t o  the mament can be written 
simiimiy from equation (33). 

Further SlmFliflcation cf L i f t  and Moment Calculations 
and Summars of Formulas 

Effect of tip.- The primary correctione t o  the l i f t  and moment 
due t o  reducing the pressures a t  the t i p  t o  zero are obtained without 
diff icul ty  from equations (43) through (47). Calculation of the 
induced pressures a t  the t ra i l ing  edge i n  order t o  make the secondary 
correction is, however, s o m e w h a t  tedious. These pressures vary very 
l i t t l e  over the Mach cone from the t ip ,  and the variation is nearly 
linear. This calculation and, i n  addition, the integration in  
equation (71) can therefore be eliminated in many cases without any 
significant loss  i n  accuracy by considering Au t o  be constant a t  
aom intermediate value between Au* and -.A(%), the value a t  
the t i p ,  The secondary correction is then simply 

s p v m t 2 s 2 f i  <atx*+y*)* tT - (e 
mtx*-BJr'c 

e the average of Au* (equation 60)) and -u~(%) 
(equation (10)) , 

Effect of t ra i l ing  edge,- The maJOr p a r t  of the Pr1-Y trail ing- 
edge correction is accomplished by the  application of the symmetrical 
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solution and, i n  many cases, the Integration of equations 0 6 )  and 
(59) can be omitted fn calculating the t o t a l  l i f t  and moment. 
the primary effect  is given by equation (55). Calculatione of the 
secondary effect  may be simplified very greatly by ignoring the 
effect  of the oblique elements, and ueing Au as calculated directly 
from equation (51) in  equation (73) and i n  the corresponding equation 
for the moment. 

Then 

WING WITH cRo6ssTHEAM Tups 

The fact, msnticmed ea r l i e r  i n  t h i s  paper, that a drastic 
reduction in  lift takes place behind the Mach cone fram the t i p  of 
the highly ewept wing suggests imrpedlately the consideration of the 
effect  of cutting off the t i p  areas alorg a lins narmal t o  the stream. 
"he resulting plan form (fig. 9) presents obvious structural  advan- 
tages and may also be expected t o  approach the triangular wing i n  
It 8 long1 tudlnal s t a b i l i t y  cherac teri st ic  s . 

In  calculating the pressure distribution over such a wing, only 
the trailing-edge solutions apply. For the t o t a l  lift and mment, 
new Integrations m e t  be perfollosd, since the elements of area are 
now different. The characteristic ray a t  is now replaced by one 
through the Inboard end of the croaa-etream t i p  
For a , lese than t h i s  value, 

(a1 in  fig.  9).  

and 

being defined by equation (48). It is  convenient t o  replace 
co by the following expreseion 

Then the basic lift is 
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When m t  =m, 

- =  LO 4s2 {Cos-' 2 + 1 [ (al) 4- - 2 ( M ~ ) ~  ] } (76) 
qa E ( $ 3 )  3 s  

The decrement of l i f t  due t o  application of the symmetrical 
solution is (provided, as before, that the trafling-edge Mach lines 
do not intersect the leading edge) 

Except for very high aspectiratio wings, the trailing edge of 
this configuration w i l l  l ie  ent i re ly  in t h a t  range over which 
d d d a  3s negligible compared t o  k. For t h i s  reason, the integra- 
tiom necessary t o  find @)a 
They are, however, elemntary in nature and can be readily carried 
through by the designer considering a wing of' t h i s  type. 

for t h i s  case have not been performed. 

The moment of the basic solution about the apex of the wing is 
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When m t  = m, 

The decrement i n  moment due J,o the rqnovel of uo a t  the 
t r e i l i ng  edge is  simply co + - ‘ - co ,) times the decr*enent 
i n  l i f t ,  OY’ 3 \ m  

where fSL i s  given by equat,ion (77). 

Coqutat-ions have been m d e  fcr a w i n g  of t h i s  t,ype and w i l l  
be presented In 3 later sectioi?. 

OTmR APPLICATIONS OF T€B OBLIQUE SOLUTIOIE 

Low Aspect RYtio Yings 

Variations of the method of t h i s  paper could be used t o  obtain 
the pressure distributions fo r  a variety of rect i l inear  plan forms 
other than the conventional swept wing. For example, the reverse 
del ta  wing (fig. 10) with t r a i l i ng  edges fa l l ing  within the Mach 
cones from the t i p s  can be treated by u s i n g  as the basic solution 
tha t  fo r  a rectangular wing with raked t i p s  (given by Hayes, 
reference 11, and others), the deficiencies from the two-dimensional 
pressure being additive where the &ch cones overlap. 
solutions of the present report would be applied t o  cancel the 
pressure deficiency introduced along the rear of each t ra i l ing  edge 
by the simple conical f i e ld  from the opposite t ip .  
r a t i o  wings can be treated similarly, provided cancellation of pressure 
ahead of a leading edge is  not involved. 

The oblique 

Other low-aspect- 



42 

Reverse Taper 

NACA TN No,  1555 

Extension of the procedure t o  wings with reverse taper is  
obvious. 
e i ther  subsonic or  supersonic leading edge. 
forward leading edges requires separate consideration. ) Starting 
with the appropriate basic solution, the subsequent procedure and 
formulas of the present report w i l l  apply without modification. 

In t h i s  case the wing with subsonic t r a i l i n g  edge may hwe 
(The case of swept- 

I V  - NUMERICAL EXAMPIES 

The method has been applied t o  two wings with 63' sweepback of 
the leading edge, one with considerable taper and one with constant 
chord, a t  a %ch number of 1.5. ?"ne wings are shown i n  figures 11 
and 12. 
required f o r  the computations, can be calculated: 

From the dimensions given, the following quantities, 

Tapered Untapered 

P 1.118 1 . 118 

m 

E ( i s )  
e570 

1.256 

e 570 

1.256 

mz, go6 * 570 

"t .528 e358 

S 26 sq f t  58 sq f t  

It should be noted that the dimensions and calculated values 
omit the t i p  fairings, which are  formed by rotating the (symmetrical) 
t i p  section about i t s  chord l ine.  
l i f t i n g  surface may be replaced f o r  l inear  potential  flow calculations, 
would have a similar rounding off outboard of the last vortex without 
adding any l i f t .  

The vortex sheet with which a 

?"ne basic velocity dis t r ibut ion (equation (10) ), which depends 
only on m, i s  the same fo r  both wings. Corrections t o  t h i s  dis- 
tr ibution, taking place within the k c h  cones from the t r a i l i ng  edge 
and t i p ,  cover so small an area of the tapered wing (fig. ll), the 
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t r a i l i ng  edge of which almost coincides with the Mach lines,  that the 
variation within that area is not of much interest .  
the t o t a l  l i f t  and moment w i l l  be given la te r .  
bution over the constant chord wing w i l l  be discussed f irst  in some 
detai l .  

The effect  on 
The pressure dis t r i -  

PRJ3SSuR% DIS'I!RIBUTION OVER SWEPT UNT-D WING 

I n  practice, it i s  convenient t o  compute a l l  velocit ies i n  terms 
of uoI the basic perturbation velocity along the X - a x i s ,  i n  order 
t o  avoid dimensionality and numerous multiplications by a constant 
factor. A l l  but the final figures w i l l  therefore show the velocities 
i n  r a t i o  form. 

The decrement i n  velocity .resulting from removal of constant 
pressure across the wake (symmetrical solution, equation (51)) 1s 
plotted against to i n  figure 13. This component is of course 
dependent only on the sweep of the trailing edge relative t o  the Mach 
l ines  and would apply equally well t o  wings of any span and taper 
having the sa,m trailing-edge sweep angle. 

The decrement i n  velocity due t o  removal of the remaining 
pressures a t  the t r a i l i ng  edge was found at  various stations spare 
wise and chordwise within the Mach cone fromthe center of the 
t r a i l i ng  edge and added t o  the decrement shown fo r  the corresponding 
value of t o  i n  figure 13. Evaluation of t h i s  second component 
involved the graphical integration, for each point, of equation (50) 
with respect t o  a. 
function. The value of a a t  which each curve fa l ls  t o  zero is a. 
(squation (33)) fo r  the specified value of x and y. The velocit ies 
obtained in t h i s  way are plotted spanwise for  two values of 
figure 15. 

Figure 14 shows sow typical plots of t h i s  

x i n  

The spanwise distribution of velocity decrement within the Mach 
cone from the t ip ,  calculated by equation (37), i s  plotted in  
figure 16. 

Figures 13, 15, and 16 represent only the primary corrections. 
I n  figures 17 (a) t o  (a) these corrections have been applied t o  the 
basic velocity distribution along the chord a t  each of four spanwise 
stations, and the results converted t o  terms of Ap/qcc 
4u0/aV = 4m/fiE (,/l--m2). 
pressures a t  the t r a i l i ng  edge remaining a f t e r  the first approxima- 
t i on  can be seen i n  the last two of these figures. 
been added t o  eliminate those errors due t o  the t i p  solution by the 
approximate mthod (equation (70))  of the preceding section. The 
errors  introduced by the symmetrical solution have been eliminated 
without resor t  t o  approximate mthods. The errors  induced by the 

by the factor 
The magnitude of the extraneous negative 

Corrections have 
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wake gradient solutions were neglected because of t he i r  location 
far back on the t i p  and the i r  re la t ively small values. The effects  
of these secondary corrections are  shown i n  figures 17 (c) and (a), 
For the final curves the pressure distribution has been arb i t ra r i ly  
faired t o  zero, taking cognizance only of the points a t  which 
succeeding corrections enter. It can be seen by drawing another s e t  
of reflected Ma,ch lines a t  the t i p  of figure 12 that the area affected 
by t h i s  approximation is very small and i s  i n  tha t  region where viscous 
effects  would tend most t o  invalidate any resu l t s  calculated by the 
present simplified theory. 
pressure distribution is  shown i n  figure 18. 

A three-dimensional view of the final 

WOFT AND M O N N T  COE3!'FICIENTS 

The various components of the l i f t , .w i th  the equations from 
which they were obtained, are given i n  table I for  both the tapered 
and constant-chord w i n g .  
one fo r  the symmetrical solution and one f o r  the effect  of the 
oblique solutions, assuming the l a t t e r  t o  be conical with respect 
t o  the apex of the t r a i l i ng  edge, i n  order t o  estimate the magnitude 
of the error involved i n  such an assumption. 
represents the upper l i m i t  of the possible error. 
correction f o r  the t i p  effect  (correction a t  the t ra i l ing  edge) 
90 percent of the effect  was obtained from the first term of 
equation (Tl), only 10 percent being contributed by the integral. 

The last correction w a s  made i n  two parts, 

The value given 
I n  the secondary 

The value of C& obtainable by discarding the trail ing-tip 
regions of the constant-chord wing was also estimated, using 
equations (76) and (77). The modified wing had the sam span as the 
original wing, but i t s  area was decreased t o  40.8 square fee t  and its 
aspect r a t io  increased from 1.725 t o  2.45 by removal of the t r a i l i ng  
t i p s .  A s  a resu l t  the value of C& increased from 2.01 t o  2.63, 
approaching that for  the highly tapered wing. 

(It m y  be remarked here that the pressure distribution for  the 
modified wing i s  identical with tha t  over the original wing (fig. 17) 
up t o  the point a t  which the t i p s  are cut off,  where the pressure 
drops discontinuously t o  zero.) 

The components of pitching moment fo r  the three wings are 
presented in  table 11. Second4pproximation corrections were not 
made where the corresponding component of l i f t  was negligible. 

DRAG DUE TO LIFT 

With the value of C b  calculated, it i s  possible t o  find 
i m d i a t e l y  the drag due t o  l i f t  fo r  the specified wings. A s  pointed 
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r e  similar c 

subject t o  a dr 
f l i g h t  direct  
due t o  the inf in i te  suction force 
the examples calculated, the Mach 
not cross the leading edge, the thrust  on the leading edge is  
exactly that on the triangular wing d equal span a t  the 88938 angle 
of attack. From reference 12, t h i s  thrust ,  i n  coefficient form, is  

where CQ, is  the l i f t  coefficient of the triangular wing. *om 
reference 6, (2% of the tr iangular wing with m < l  is 

$E 
the th rus t  force can be expressed i n  t e r n  of the sweep of the t r a p  
ezoidal wing as follows: 

2m Using t h i s  value and the area of the tr iangular wing $s*/m, 

The t o t a l  drag for the swept wdng is  therefore 

and the drag coefficient may be written 

or 

For the three w i n g s  described, the resu l t s  may be summarized as 
follows : 
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wing - 
Tapered w i n g  

Untapered ving 

Modified untapered 
w i n g  

CL Aspect 
rat_io a 

3.85 3.09 0.160 

1.73 2.01 .323 

2.45 2.63 253 

The calculation of the theoretical load over a eweptAack wlag 
of moderate aspect r a t i o  at a Mach number not too cloee t o  one 
appears t o  be feasible by the method described in this paper, Ihe 
t o t a l  l i f t  C ~ L I  be approklmated within 5 percent for a considerable 
range of prac$ical plan farms with only the first step of the 
successive approximations outlined. In the caeee calculated, the 
major effects  were obtained vi th  only one graphical integration for 
each w i n g  (that for  the prinrary t i p  effect) .  
readily approximated; 8- secondary corrections W i l l  gem- provS 
nece s eary . 

The m?mnt l e  not 88 

Although i n  the examples calculated the oblique solutione ~011- 
tributed only about 1 pement t o  the final lift and 2 percent t o  the 
marnent, they are expected t o  prove useful for other caeee, partiota- 
l a r l y  for low-aspect-ratio wings of other than remtengular plan form. 

A t  Mach numbers close t o  1.0, the nrethod l e  no longer practical  
especially for  predicting pressure distributlone. 
som other lins of approach is  required for t h i s  cam. 

theory that the determining factor i n  the aerodymmlc perf-e of 
wings, as  f a r  as  differences in plan form are concerned, l e  the &is- 
position of m a  relative t o  the Mach llnee. 
effect  of taper and increased aspect ratio,  for example, le largely 
the result of reducing the percentage of area within the Mnoh U O n O 6  
from the t i p  and t ra i l ing  edge. 
t i p  areas, i n  particular, may be expected t o  have 8 aerioue effect  
on the longitudinal s t ab i l i t y  variation wi th  Mach number. 
proper thickness distribution, the wlng with croeHtream t ipa ma.y 
provide the solution t o  th i s  prbblem. 

It appear6 that 

The results of the calculations emphasize the indlcatione af the 

The apparent beneficidl 

The negative l i f t  calculated for the 

W i t h  the 

Ames Aeronautical Iaboratory, 
National Advisory Cammittee for Aeronautics, 

Moffett Field, Calif. 
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Summary of Symbols 

47 

M 

8 

P 

9 

AP 

CO 

8 

S 

a 

A 

m 

mt 

a 

Cartesian coordinates i n  the stream direction, across the 
stream, and in the ver t ical  direction, respectively 

free-stream velocity 

perturbation velocit ies i n  the stream direction, acro8s the 
stream, and in the ver t ical  direction, respectively 

free-atream Mach number 

m 
demity of air 

pressure difference between upper and lower surface8, or 
. local l i f t  

root chord 

Semispan 

w i n g  area 

angle of attack, radians 

angle of sweep of the leading edge 

slope of leading edge 
slope of Mach lines 
slope of t r a i l i ng  edge 
slope of Mach lines 

= $ cOtA 

slope of any ray through origin By 
s l o p  of Mach lines X 

- - -  
lUso used t o  designate a ray through the origin or a 
constanLload elemsnt having s w h  a ray a8 o m  side, the 
other aide being a boundary of the wing surface. Used 
as a subscript t o  designate any quantity pertaining t o  
such an elemnt,  
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a0 value of a corresponding t o  most rearwaxd element affect ing 
a specified point x,y. On t i p ,  a. = Ps 

x+P (s-. 1 

BS+co-X 
PY+cOmt-X 

On trailing edge, a. = ny, 

slope of ray through trailing-edge t i p  
slope of k c h  l i nes  a t  

xatya coordinates of apex of any constant-load element a 

x b , n  coordinates of apex of elements used i n  secondary corrections 

x* ,p  coordinates of the point a t  which the Mach line from the t i p  

slope of ray through apex of element a - - p 
crosses the t r a i l i n g  edge 

f o r  any 
slope of Mach l ine  X-Xa 

t a 

point x,y 

slope of ray through q-,,yb = p -  y-yb 
slope of Mach l ines  X-% 

t b  

slope of ray through trailing-edge apex - y - P -  slope of Mach l ines  X+O t 0  

slope of ray f r o m  leadingddge t i p  Y+ 
X - B S  = P  

m slope of Mach l ine  t m  

t* slope of ray  through x*,y* = p -  Y - P  
slope of Mach l ines  x-x* 

Uh basic perturbation velocity as given by solution f o r  
tr iangular wing 

U 1  value of u fo r  w i n g  with supersonic leading edge, 
when a > 1 - - 

UO value of yl?, for wing with subsonic leading edge when 
a& (center line of wing)  

U a  increlnental velocity on any constanhload element a 

Au 

(AU)a 

correction t o  the basic incremental velocity at any point 

correction t o  the basic incremental velocity induced by a 
single e l emnt  a 
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Decrement i n  velocity u induced at x*,yJc by cancellation 
O f  pr8SSUr8S a t  the t i p  

basic l i f t  for  ent i re  wing 

basic moment 

correction t o  t o t a l  l i f t  due t o  application of one conetant- 
load element 

correction t o  the basic l i f t  t? 

complex velocity potential functian 

re&l part of cp 

imaginary part of 6, 

complex velocity function of which u i e  the real part 

imaginary part of U 

, argument for aolutions of the supereonic - y+i  Z - 
x+&q32y2-p 22 
f l o w  equation 

e l l i p t i c  integral of the eecond kind 

e l l i p t i c  integral of the f i r a t  kind 

complete e l l i p t i c  integral of the f i r a t  kind 



where 

Integration for Lose of L i f t  a t  the Tip 
of the Highly Swept W i n g  

From equations (42), (WI), and (10) 

b 

r 

The terms i n  G' (a) are of two types; namely, those t h a t  
contain d a  and those that do not. 
radical 
second, and th i rd  kinds, 
equation (Al) which are immediately integrable by elemntary means. 
It is convenlent, therefore, t o  consider the integral  i n  two pa r t s ,  
writing 

The farmer combine with the 
i n  (.AI), t o  form e l l i p t i c  integrals of the first, 

The latter give r i s e  t o  terms In 

where 
integrals. 

I1 is tha t  part  of the integral  not requiring e l l i p t i c  

Then 
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 he remaining terms, involving JZZ and JZZ, are inte- 
grated by =ana of the eubetltution3 

so that 

en * = JmTl) 

The terms involving - require in addition the following func- mt-a 
tions and parameters: 

In the final formula for 12, given below, the elliptic 
functione have beer, m-expressed, as far as possible, in term of 
the  OrSginal parameters, in order to simplify the computing pro- 
cedure. The result le 

3The symbols u and a used throughout t he  remainder of this 
appendix are  the standard notation for elliptic functions ar?d 
are not to be confused with the aerodynamic symbols of the text. 
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and 

1s Legendre's form of the e l l i p t i c  integral of the third kind. 

I n  the present problem the integral  

du 
(l+n an2u)2 

also arises. Differentiation of & with respect t o  the 
parameter n gives 

which may then be eolved for 



This re la t ion  i s  the source of the term i n  
While n3 and i ts  derivative are not tabulated, they can be eval- 
uated for individual cases by the following msthod: 

an3/& i n  equation (AS). 

we first note that n >*o. The procedure t o  evaluate TI 
required in that case has been outlined i n  some detail. a8 case IV 
i n  reference 13. 
t o  make use of available tabulated functions. The parazneter a 
(equation (AS)) is  introduced. Then, if ut  is the value of u 
when a = at, 

The following is  an adaptation of that procedure 

with 

iZ(ia)  = a + E (a,kg) - a E' - - ib fa* k' )en h.k'  1 
2KK9 K' cn (a, k' ) 

and 

The e l l i p t i c  functions sn(a,k'),  cn(a,k'), dn(a,k') can be computed 
from the value of tn(a,k') (equation (A?)), while u t  is  simply 
F ((p,k). I n  Z (ia) , K,K* and E,Ep are the complete e l l i p t i c  
integrals of m o d u l i  k and kg ,  respectively, In  9 ,  q is the 

quantity e , and an is  the asymptotic value of the sequence 
defined by the recurrence formulae an = $ (a*l + b s l )  and 
bn = d x '  with a, = 1 and bo = k'. (See reference 13.) 

The derivative of f13 with respect t o  n i s  5 2 ,  which 

4K' - 

may be obtained far t h i s  case (n > 0) i n  the form 
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Substitution of the limlts a,nd the expressions in equation (Ak), 
gives 

an 2n dn (a,k') 
cnf hk') - an2 (a,k') ] { [E (a,kk') kn,(n,cP,k) - sn (u,kg )cn (a,k' ) - 

+ E a -  E a ] F(cP,k) + u)' 

'\ 

REFERENCES 

1. von Karman, Theodore: Supersonic Aerodynamics - Principles and 0 0  

Applications. Jour. Aero. Sci.,vol. 14, no, 7, July 1947. 

2. Eward, John C.: Distribution of Wave Drag and Lift in the 
Vicinity of Wing Tips at Supersonic Speeds. NACA TN No. 1382, 
1947. 

3. Heaslet, bx. A., Lomax, Harvard, and Jones, Arthur L.: 
VolterraOs Solution of the Wave EquatiGn as Applied to Three- 
Dimensional Supersonic Airfoil Problems. NACA TN No. 1412, .1&7. 

4. Busemann, Adolf: Infinitesimal Conical Supersonic Flow. 
NACA TM No. 1100, 1947. 

5. Exckett, Allen E.: Supersonic Wave Drag of Thin Airfoils. 
Jour, Aero, Sci., vol, 13, no. 9, Sept, 1946, pp. 47-84. 

Quart. of Applied Math,, vole Tv, no. 3, Octo 1946. 
pp, 246-254, 

6 ,  Stewart, H, J.: The Lift of a Qelta Wing at Supersonic Speeds. 

7. Heaslet, Mxc. A., and Loma.x, Harvard: The Use o f  Source-Sink 
and Doublet Distributions Extended to the Solution of 
Arbitrary Boundary Value Problem in Supersonic Flow, 
NACA "N NO. 1515, 1947. 



55 NACA Tm No. 1555 

a. 

9. 

10 a 

11. 

12. 

Legendre, Adrien k r i e :  
E l l i p t i c  Integrals. 
Cambridge University Press, Cambridp; Eng. 1934. 

Tables of the Complete and Inccmglete 
B i a m e t r i k a  office, University College, 

Dwight, He'rbert B r i s t o l :  Tables of Integrals and Other Mathe- 
matical Pata, , The Wmillan Campany, New Ymk, 1934, p. 155. 

-68, Wallme Do, Brame,  Sa HI, and I;~w, Ra J.: Linearized 
Theory of Conical Supersonic Fluw with Application t o  
Triangular Wings. 
Sept. 30, 1946. 

North American Report NAAU~~., 

Jones, Robert T.: Properties of LaF-Aspect-Ratio Pointed W i n g s  a t  
Sped8 Below and Above the Speed of Sound. NACA TIV No. 1032, 1946. 

NACA TN No. 1350, 1947. 
Jones, Robert T.: Estimated Lift-Drag Ratios at  Supersonic Speed. 

13.  King, Louis V.: On the Direct Numerical Calculation of El l ip t ic  
Functions and Integrals. Cambridge University  pres^, 1924. 



$I, 
OI 
d 
m 

1 %  % 



NACA l ! N  No. 1555 37 

1 t 

I 

l a :  I 
I 3  I 

I I 

I 

s 
R 



~ A C A  mi mo. 1555 

36 e z 

cr, 
h 
-9 a 

0 

c 
c, s 
b’ / p 



Fig. 2 



NACA Tm No. a555 

Argument of ' 

inverse cosine 

-/ 

+/ 
0 

-/ 

I 
I 
\ Ueo/ ond Imoginory 
1 \ p 4 m  of u '. 

Fig .  3 

Figure 3.- €/ementory solution for tip. 
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Figure 4.-Percent dropoff in lift along Moch line from tip. 
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Fig. 5 
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Figure 5.- Detal/ of troi/ing edge of hlgh/y swept wing showing 
oblique constant- /ift element and induced velocity 
distribution. 



Fig.  6 
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Figure 1.- Sscond step of successive upproxhutions. Correction 
for pressures ut tip induced .by truiling-edge solution. 
Shuded ureu denotes extroneous pressure field. 



Fig. 8 
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Figure 9.- Wing with ‘kross-stream tipsu, showing ray a, 
through the inboord end of the tip. 
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Figure IO: Reverse delta wing. 



Fig .  11 

Figure M- Tapered wing used in colculotions showing 
primary and secondary Mach h e s  of M = / . 5 .  
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Figure 12.- Untopered wing for which pressure distribution 
wos cu/cu/ufed, showing primary ond secondory 
Moch /ines of Mf1.5. 
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Figure 13.- Incremento1 velocity distribution due to 
removol of constont - lift symmetricol sector 
in woke (shown positive). 
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Figure 16,- Sponwiss distribution of incremsntd 
velocity ot vorious chordwise stotrbns 

e Much cone from the tip of the 
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l Contribution of symmetrical 
wake correction 

2. Contribution of oblique 
elements in wake 
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Figure I?? Chordwise pressure distributions ca/cu/uted 
for the untapered wing. 
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L Contribution of symmetrical 
wuke correction 

2. Conttibution of oblique 
e/ements in woke 

3. Contribution of first tip 
correction 

4. Correction for (3) at the 
#roiling edge 

A P  
qa 
- 

0 25 50 75 

(c/ s s.768 
Percent chord 

Y 

NACA Tm No. 1555 

'0 

figure 12- (continued) 



Fig. 17d 

2. Contribution of ob/igue 
elements in woke 

3. Contribution of first tip 
correction 
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